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The Alòs Itô decomposition formula

Following Elisa Alòs in [Alò12], let Xt = log St/K and consider the
price process

dXt = σt dZt −
1

2
σ2
t dt.

Now let H(x ,w) be some function that solves the Black-Scholes
equation.

Specifically,

−∂wH(x ,w) +
1

2
(∂xx − ∂x)H(x ,w) = 0

which is of course the gamma-vega relationship.

Note in particular that ∂x and ∂w commute when applied to a
solution of the Black-Scholes equation.
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Now, define wt(T ) as the integral of the expected future variance:

wt(T ) := E
[∫ T

t
σ2
s ds

∣∣∣∣Ft

]
.

Notice that

wt(T ) = Mt −
∫ t

0
σ2
s ds,

where the martingale Mt := E
[∫ T

0 σ2
s ds
∣∣∣Ft

]
. Then it follows that

dwt(T ) = −σ2
t dt + dMt .
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Applying Itô’s Lemma to Ht := H(Xt ,wt(T )), taking conditional
expectations, simplifying using the Black-Scholes equation and
integrating, we obtain

Theorem (The Itô Decomposition Formula of Alòs)

E [HT | Ft ] = Ht + E
[∫ T

t
∂xwHs d〈X ,M〉s

∣∣∣∣Ft

]
+

1

2
E
[∫ T

t
∂wwHs d〈M,M〉s

∣∣∣∣Ft

]
. (1)

Note in particular that (1) is an exact decomposition.
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Freezing derivatives

Freezing the derivatives in the Alòs Itô decomposition formula (1)
gives us the approximation

E [HT | Ft ] ≈ Ht + E
[∫ T

t
d〈X ,M〉s

∣∣∣∣Ft

]
∂xwHt

+
1

2
E
[∫ T

t
d〈M,M〉s

∣∣∣∣Ft

]
∂wwHt

= Ht + (X �M)t(T ) · Ht +
1

2
(M �M)t(T ) · Ht .

Remark

The essence of the Exponentiation Theorem is that we may express
E [HT | Ft ] as an exact expansion consisting of infinitely many
terms, with derivatives in each such term frozen.
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Diamond and dot notation

Let At and Bt be semimartingales (here some combinations of X
and M). Then

(A � B)t(T ) = E
[∫ T

t
d〈A,B〉s

∣∣∣∣Ft

]
.

When (A � B)t(T ) appears before some solution Ht of the
Black-Scholes equation, the dot · is to be understood as
representing the action of ∂x and ∂w applied to Ht .

So for example

(X �M)t(T ) · Ht = E
[∫ T

t
d〈X ,M〉s

∣∣∣∣Ft

]
∂xw Ht

and so on.
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Diamond functionals as covariances

Diamond (or autocovariance) functionals are intimately
related to conventional covariances.

Lemma

Let A and B be martingales in the same filtered probability space.
Then

(A � B)t(T ) = E [ATBT | Ft ]− At Bt = cov [AT ,BT | Ft ] .

By finding the appropriate martingales, it is thus always
possible to re-express autocovariance functionals in terms of
covariances of terminal quantities. For example, it is easy to
show that (M �M)t(T ) = var [〈X 〉T | Ft ].
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Autocovariance functionals vs covariances

Covariances are typically easy to compute using simulation.

Diamond functionals are expressible directly in terms of the
formulation of a model in forward variance form.
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Conditional variance of XT

Consider

Ft = X 2
t + wt(T ) (1− Xt) +

1

4
wt(T )2.

F (x ,w) satisfies the Black-Scholes equation and FT = X 2
T .

∂x,wF = −1 and ∂w ,wF = 1
2 .

Plugging into the Decomposition Formula (1) gives

E
[
X 2
T

∣∣Ft

]
= wt(T ) +

1

4
wt(T )2 − E

[∫ T

t
d〈X ,M〉s

∣∣∣∣Ft

]
+

1

4
E
[∫ T

t
d〈M,M〉s

∣∣∣∣Ft

]
= wt(T ) +

1

4
wt(T )2

−(X �M)t(T ) +
1

4
(M �M)t(T ).



Decomposition Trees and forests Exponentiation Rough Heston

Volatility stochasticity

We can rewrite this as

Lemma

ζt(T ) := var[XT |Ft ]− wt(T ) = −(X �M)t(T ) +
1

4
(M �M)t(T ).

Recall that in a stochastic volatility model, the variance of the
terminal distribution of the log-underlying is not in general
equal to the expected quadratic variation.

In the Black-Scholes model of course ζt(T ) = 0.

We call the difference ζt(T ) volatility stochasticity or just
stochasticity.



Decomposition Trees and forests Exponentiation Rough Heston

Model calibration

Once again, stochasticity is given by

ζt(T ) = −(X �M)t(T ) +
1

4
(M �M)t(T ).

The LHS may be estimated from the volatility surface using
the spanning formula.

ζt(T ) is a tradable asset for each T .
We get a matching condition for each expiry Ti , i ∈ {1, ..n}.

The RHS may typically be computed in a given model as a
function of model parameters.

If so, we would be able to calibrate such a model directly to
tradable assets with no need for any expansion.
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ζt(T ) directly from the smile

Let

d±(k) =
−k

σBS(k,T )
√
T
± σBS(k,T )

√
T

2

and following Fukasawa, denote the inverse functions by
g±(z) = d−1

± (z). Further define

σ−(z) = σBS(g−(z),T )
√
T .
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In terms of the implied volatility smile, it is a well-known corollary
of Matytsin’s characteristic function representation in [Mat00], that

wt(T ) =

∫
dz N ′(z)σ2

−(z) =: σ̄2.

Similarly, we can show that

ζt(T ) =
1

4

∫
N ′(z)

[
σ2
−(z)− σ̄2

]2
dz +

2

3

∫
N ′(z) z σ3

−(z) dz .

We may thus in principle use stochasticity to calibrate any
given model.

In practice, we need a good parameterization of the implied
volatility surface (see VolaDynamics later).
Whether or not market implied stochasticity is robust to the
interpolation and extrapolation method is still to be explored.
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Forward variance models

Following [BG12], consider the model

dSt
St

=
√
vt
{
ρ dWt +

√
1− ρ2 dW⊥

t

}
dξt(u) = λ(t, u, ξt) dWt . (2)

where vt = σ2
t denotes instantaneous variance and the

ξt(u) = E [vu| Ft ] , u ∈ [t,T ] are forward variances.

To expand such a model, we scale the volatility of volatility
function λ(·) so that λ 7→ ε λ. Setting ε = 1 at the end then
gives the required expansion.
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The Bergomi-Guyon expansion

According to equation (13) of [BG12], in diamond notation,
the conditional expectation of a solution of the Black-Scholes
equation satisfies

E [HT | Ft ]

=

{
1 + ε (X �M)t +

ε2

2
(M �M)t

+
ε2

2
[(X �M)t ]

2 + ε2 (X � (X �M))t +O(ε3)

}
· Ht
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We notice that

E [HT | Ft ] = exp

{
ε (X �M)t +

ε2

2
(M �M)t

+ε2 (X � (X �M))t +O(ε3)

}
· Ht ,

the exponential of a sum of “connected diagrams”.

Motivated by exponentiation results in physics, we are
tempted to see if something like this holds to all orders.
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Trees

Terms such as (X �M), (M �M) and X � (X �M) are
naturally indexed by trees, each of whose leaves corresponds
to either X or M.

We end up with diamond trees reminiscent of Feynman
diagrams, with analogous rules.
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Forests

Definition

Let F0 = M. Then the higher order forests Fk are defined
recursively as follows:

Fk =
1

2

k−2∑
i ,j=0

1i+j=k−2Fi �Fj + X �Fk−1.
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The first few forests

Applying this definition to compute the first few terms, we obtain

F0 = M

F1 = X �F0 = (X �M)

F2 =
1

2
(F0 �F0) + X �F1 =

1

2
(M �M) + X � (X �M)

F3 = (F0 �F1) + X �F2

= M � (X �M) +
1

2
X � (M �M) + X � (X � (X �M))
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The first forest F1 = X �M

♦

X M
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The second forest F2

F2 =
1

2
(M �M) + X � (X �M)

♦

M M

♦

X ♦

X M
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The third forest F3

F3 = M � (X �M) +
1

2
X � (M �M) + X � (X � (X �M))

♦

M ♦

X M

♦

X ♦

M M

♦

X ♦

X ♦

X M
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Simple diamond rules

For k > 0, the kth forest Fk contains all trees with k + 2
leaves where X is counted as a single leaf, and M as a double
leaf.

Prefactor computation:

Work from the bottom up.
If child subtrees immediately below a diamond node are
identical, carry a multiplicative factor of 1

2 .



Decomposition Trees and forests Exponentiation Rough Heston

Example: One tree in F7

1

4
(M �M) � (X � (M �M))

♦

♦

M M

♦

X ♦

M M
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The Exponentiation Theorem

The following theorem proved in [AGR2017] follows from (more or
less) a simple application of Itô’s Lemma and the Alòs Itô
decomposition formula.

Theorem

Let Ht be any solution of the Black-Scholes equation such that
E [HT | Ft ] is finite and the integrals contributing to each forest
Fk , k ≥ 0 exist. Then

E [HT | Ft ] = e
∑∞

k=1 Fk · Ht .



Decomposition Trees and forests Exponentiation Rough Heston

If Ht is a characteristic function

Consider the Black-Scholes characteristic function

ΦT
t (a) = e i a Xt− 1

2
a (a+i)wt(T )

which satisfies the Black-Scholes equation.

Applying Fk to Φ just multiplies Φ by some deterministic
factor.

Then
e
∑∞

k=1 Fk · ΦT
t (a) = e

∑∞
k=1 F̃k (a) ΦT

t (a)

where F̃k(a) is Fk with each occurrence of ∂x replaced with
i a and each occurrence of ∂w replaced with −1

2 a (a + i).
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Then from the Exponentiation Theorem, we have the following
lemma.

Lemma

Let
ϕT
t (a) = E

[
ei a XT

∣∣∣Ft

]
be the characteristic function of the log stock price. Then

ϕT
t (a) = e

∑∞
k=1 F̃k (a) ΦT

t (a).

Corollary

The cumulant generating function (CGF) is given by

ψT
t (a) = logϕT

t (a) = i a Xt −
1

2
a (a + i)wt(T ) +

∞∑
k=1

F̃k(a).
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Variance and gamma swaps

The variance swap is given by the fair value of the log-strip:

E [XT | Ft ] = (−i)ψT
t
′
(0) = Xt −

1

2
wt(T )

and the gamma swap (wlog set Xt = 0) by

E
[
XT eXT

∣∣∣Ft

]
= −iψT

t
′
(−i).

Remark

The point is that we can in principle compute such moments for
any stochastic volatility model written in forward variance form,
whether or not there exists a closed-form expression for the
characteristic function.
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The gamma swap

It is easy to see that only trees containing a single M leaf will
survive in the sum after differentiation when a = −i so that

∞∑
k=1

F̃
′
k(−i) =

i

2

∞∑
k=1

(X�)kM

where (X�)kM is defined recursively for k > 0 as
(X�)kM = X � (X�)k−1M. Then the fair value of a gamma swap
is given by

Gt(T ) = 2E
[
XT eXT

∣∣∣Ft

]
= wt(T ) +

∞∑
k=1

(X�)kM. (3)

Remark

Equation (3) allows for explicit computation of the gamma swap
for any model written in forward variance form.
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The leverage swap

We deduce that the fair value of a leverage swap is given by

Lt(T ) = Gt(T )− wt(T ) =
∞∑
k=1

(X�)kM. (4)

The leverage swap is expressed explicitly in terms of
covariance functionals of the spot and vol. processes.

If spot and vol. processes are uncorrelated, the fair value of
the leverage swap is zero.

An explicit expression for the leverage swap!
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Leverage swap from the smile

Define
σ±(z) = σBS(g±(z),T )

√
T .

where g± are the Fukasawa inverse functions introduced
earlier.

Then the gamma swap may be estimated from the smile using

Gt(T ) =

∫
R
dz N ′(z)σ2

+(z).

And as before, the variance swap is given by

wt(T ) =

∫
R
dz N ′(z)σ2

−(z).

Recall that Lt(T ) = Gt(T )− wt(T ).
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Skewness

As is well-known, the first three central moments are easily
computed from cumulants by differentiation. For example,
skewness is given by

St(T ) := E
[

(XT − X̄T )3
∣∣Ft

]
= (−i)3 ψT

t
′′′

(0)

= −3

2
(M �M)t(T )− 3

8
(M � (M �M))t(T )

+
3

2
(M � (X �M))t(T ) + 3 (X �M)t(T )

+
3

4
(X � (M �M))t(T )− 3 (X � (X �M))t(T ).

(5)

An explicit expression for skewness!
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The Bergomi-Guyon smile expansion

The Bergomi-Guyon (BG) smile expansion (Equation (14) of
[BG12]) reads

σBS(k ,T ) = σ̂T + ST k + CT k2 +O(ε3)

where the coefficients σ̂T , ST and CT are complicated
combinations of trees such as X �M.

As we have seen, such trees are formally easily computable in
any stochastic volatility model written in forward variance
form.

The beauty of the BG expansion is that in some sense, it
yields direct relationships between the smile and
autocovariance functionals.
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Bergomi-Guyon to higher order

We can extend the Bergomi-Guyon expansion to any desired
order using our formal expression for the CGF in terms of
forests.
To second order, the ATM volatility skew is given by

ψt (T ) := ∂kσBS(k,T )|k=0

=

√
w

T

{
1

2 w2
(X � M) +

1

2 w2
(X � (X � M))−

3

8 w3
(X � M)2

}
(6)

It seems to be more natural to consider the total implied
variance skew. For example, to third order,

∂kσBS(k,T )2 T
∣∣∣
k=0

=
X � M

w
+

X � (X � M)

w
−

1

2

(
X � M

w

)2

+
3

4
(X � (X � (X � M)))

w − 4

w2

−(M � (X � M))
w + 12

8w2
− (X � (M � M))

w + 12

16w2

+(M � M) (X � M)
w + 14

8w3
+ (X � M)3 w − 64

16w4
−

1

2
(X � M) (X � (X � M))

w − 14

w3
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Skewness, leverage, stochasticity and the volatility skew

The explicit expression (5) for skewness applies to any
stochastic volatility model written in forward variance form.

There are numerous references in the literature to the
connection between the implied volatility skew and both the
skewness and the leverage swap.

Our explicit expression shows how these three quantities are
related.

Denoting the ATM implied volatility skew by ψt(T ), we have
from the BG expansion that to lowest order,

ψt(T ) =

√
w

T

1

2w2
(X �M)t(T )

and to lowest order in the forest expansion,

1

3
St(T ) = (X �M)t(T ) = Lt(T ) = −ζt(T ).
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The rough Heston model

In the zero mean reversion limit, the rough Heston model of
[ER16] may be written as

dSt
St

=
√
vt
{
ρ dWt +

√
1− ρ2 dW⊥

t

}
=
√
vt dZt

with

vu = ξt(u) +
ν

Γ(α)

∫ u

t

√
vs

(u − s)γ
dWs , u ≥ t

where ξt(u) = E [vu| Ft ] is the forward variance curve, γ = 1
2 − H

and α = 1− γ = H + 1
2 .
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The rough Heston model in forward variance form

In forward variance form,

dξt(u) =
ν

Γ(α)

√
vt

(u − t)γ
dWt . (7)

Remark

(7) is a natural fractional generalization of the classical Heston
model which reads, in forward variance form [BG12],

dξt(u) = ν
√
vt e
−κ (u−t) dWt .
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Computation of autocovariance functionals

Apart from Ft measurable terms (abbreviated as ‘drift’), we have

dXt =
√
vt dZt + drift

dMt =

∫ T

t
dξt(u) du

=
ν

Γ(α)

√
vt

(∫ T

t

du

(u − t)γ

)
dWt

=
ν (T − t)α

Γ(1 + α)

√
vt dWt .
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The first order forest

There is only one tree in the forest F1.

F1 = (X �M)t(T ) = E
[∫ T

t
d〈X ,M〉s

∣∣∣∣Ft

]
=

ρ ν

Γ(1 + α)
E
[∫ T

t
vs (T − s)α ds

∣∣∣∣Ft

]
=

ρ ν

Γ(1 + α)

∫ T

t
ξt(s) (T − s)α ds.
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Higher order forests

Define for j ≥ 0

I
(j)
t (T ) :=

∫ T

t
ds ξt(s) (T − s)j α.

Then

dI
(j)
s (T ) =

∫ T

s
du dξs(u) (T − u)j α + drift terms

=
ν
√
vs

Γ(α)
dWs

∫ T

s

(T − u)j α

(u − s)γ
du + drift terms

=
Γ(1 + j α)

Γ(1 + (j + 1)α)
ν
√
vs (T − s)(j+1)α dWs + drift terms.

With this notation,

(X �M)t(T ) =
ρ ν

Γ(1 + α)
I

(1)
t (T ).
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The second order forest

There are two trees in F2:

(M �M)t(T ) = E
[∫ T

t
d〈M,M〉s

∣∣∣∣Ft

]
=

ν2

Γ(1 + α)2

∫ T

t
ξt(s) (T − s)2α ds

=
ν2

Γ(1 + α)2
I

(2)
t (T )

and

(X � (X �M))t (T ) =
ρ ν

Γ(1 + α)
E
[∫ T

t
d〈X , I (1)〉s

∣∣∣∣Ft

]
=

ρ2 ν2

Γ(1 + 2α)
I

(2)
t (T ).
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The third order forest

Continuing to the forest F3, we have the following.

(M � (X �M))t (T ) =
ρ ν3

Γ(1 + α) Γ(1 + 2α)
I

(3)
t (T )

(X � (X � (X �M)))t (T ) =
ρ3 ν3

Γ(1 + 3α)
I

(3)
t (T )

(X � (M �M))t (T ) =
ρ ν3 Γ(1 + 2α)

Γ(1 + α)2 Γ(1 + 3α)
I

(3)
t (T ).

In particular, we easily identify the pattern

(X�)kMt(T ) =
(ρ ν)k

Γ(1 + k α)
I

(k)
t (T ).
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The leverage swap under rough Heston

Using (4), we have

Lt(T ) =
∞∑
k=1

(X�)kMt(T )

=
∞∑
k=1

(ρ ν)k

Γ(1 + k α)

∫ T

t
du ξt(u) (T − u)k α

=

∫ T

t
du ξt(u) {Eα(ρ ν (T − u)α)− 1} (8)

where Eα(·) denotes the Mittag-Leffler function.

An explicit expression for the leverage swap!
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The normalized leverage swap

Given the form of equation (8), it is natural to normalize the
leverage swap by the variance swap. We therefore define

Lt(T ) =
Lt(T )

wt(T )
. (9)

In the special case of the rough Heston model with a flat forward
variance curve,

Lt(T ) = Eα,2(ρ ν τα)− 1,

where Eα,2(·) is a generalized Mittag-Leffler function. We further
define an nth order approximation to Lt(T ) as

L
(n)
t (T ) =

n∑
k=1

(ρ ν τα)k

Γ(2 + k α)
.
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A numerical example

We now perform a numerical computation of the value of the
leverage swap using the forest expansion in the rough Heston
model with the following parameters, calibrated to the SPX
options market as of April 24, 2017:

H = 0.0236; ν = 0.3266; ρ = −0.6510.
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The leverage swap under rough Heston

In Figure 1, we plot the normalized leverage swap Lt(T ) and

successive approximations L
(n)
t (T ) to it as a function of τ .

Figure 1: Successive approximations to the (absolute value of) the
normalized rough Heston leverage swap. The solid red line is the exact

expression Lt(T ); L
(1)
t (T ), L

(2)
t (T ), and L

(3)
t (T ) are brown dashed, blue

dotted and dark green dash-dotted lines respectively.
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The leverage swap under rough Heston

We note that three terms are enough to get a very good
approximation to the normalized leverage swap for all expirations
traded in the listed market. Moreover, leverage swaps are
straightforward to estimate from volatility smiles.

Remark

In practice, (9) can be used for very fast and efficient calibration of
the three parameters of the rough Heston model by minimizing the
distance between model and empirical normalized leverage swap
estimates.
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Leverage estimates using VolaDynamics

Figure 2: Leverage estimates using the VolaDynamics curves C13PM
(blue) and C14PM (red) and their respective rough Heston fits as of
24-Apr-2017. See https://voladynamics.com.

With a good volatility surface parameterization, it looks as if
it might be possible to estimate the term structure of
normalized leverage robustly.

https://voladynamics.com
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Stochasticity under rough Heston

Recall that

ζt(T ) = −X �M +
1

4
(M �M).

Under rough Heston, we easily compute

ζt(T ) = − ρ ν

Γ(1 + α)
I

(1)
t (T ) +

ν2

Γ(1 + α)2
I

(2)
t (T )

where

I
(j)
t (T ) :=

∫ T

t
ds ξt(s) (T − s)j α.
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With a flat variance curve,

I
(j)
t (T ) :=

∫ T

t
ds ξt(s) (T − s)j α =

w

j α + 1
(T − t)j α

where

w =

∫ T

t
ξt(s) ds.

Then

ζt(T )

w
= − ρ ν

Γ(2 + α)
(T − t)α +

ν2

(1 + 2α) Γ(1 + α)2
(T − t)2α.
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Summary

We stated the Alòs Itô Decomposition Formula.

We introduced diamond notation.

We defined trees and forests and showed how to compute all
such forests diagrammatically.

We stated the Exponentiation Theorem.

We used this theorem to compute various quantities of
interest under rough Heston in closed form.
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